Актиферрин (aktiferrin) инструкция по применению

Функции белков в природе универсальны. Белки входят в состав всех живых организмов. Мышцы, кости, покровные ткани, внутренние органы, хрящи, шерсть, кровь — все это белковые вещества.

ОБНОВЛЕНИЯ

08 июня 2019, 16:18:59

Токсикозы при кишечных инфекциях

08 июня 2019, 16:10:24

Токсикозы при кишечных инфекциях

07 июня 2019, 22:59:05

Острый обструктивный ларингит (круп) у детей

09 мая 2019, 16:13:23

Заболеваемость

27 апреля 2019, 16:00:00

Амбулаторно-поликлиническое обслуживание населения

24 апреля 2019, 01:02:18

Недостаточность питания у детей раннего возраста

17 апреля 2019, 22:26:23

Желчно-каменная болезнь: лечение

17 апреля 2019, 22:21:37

Желчно-каменная болезнь: диагностика

17 апреля 2019, 22:07:42

Желчно-каменная болезнь: этиология и патогенез

17 апреля 2019, 22:06:28

Анатомия желчевыводящих путей

ПОДЕЛИТЬСЯ:

Рецепторы серотонина

Существует 7 типов серотониновых рецепторов. Все они, за исключением 3-го типа, ионотропного, являющегося лиганд-зависимым ионным каналом, суть метаботропные. Также стоит отметить, что эти рецепторы при активации могут выполнять как тормозящую, так и возбуждающую функцию. При активации серотониновых рецепторов нейрон может выбрасывать не только различные низкомолекулярные нейромедиаторы (собственно серотонин, ацетилхолин, ГАМК, глутамат, дофамин, адреналин, норадреналин, октопамин), но и сигнальные пептиды и нейростероиды (кортизол, окситоцин, вазопрессин, пролактин, АКТГ, вещество Р и нейрокинины). Серотонинэргическая сигнальная система участвует в регуляции некоторых жизненно важных функций организма: сон, терморегуляция, пищевое поведение, когнитивно-мнестические способности, работа ЖКТ, тонус сосудов. Соответственно количеству функций эта система является мишенью множества фармакологически активных веществ: психотомиметиков/антипсихотиков, антидепрессантов, противорвотных, прокинетиков.

Общая характеристика типов серотониновых рецепторов. Информация по 5-НТ8 взята из Qi YX, Xia RY, Wu YS, Stanley D, Huang J, Ye GY (2014). «Larvae of the small white butterfly, Pieris rapae, express a novel serotonin receptor». J. Neurochem. 131: 767–77. doi: PMID 25187179.

Рецепторы серотонина

Стоит отметить, что 5-НТ8 рецептор у людей не встречается и был найден лишь у нескольких насекомых: бабочки репницы (Pieris rapae), хрущака малого булавоусого (Tribolium castaneum) и малярийных комаров вида Anopheles gambiae.

Что происходит при недостатке маннита?

Организм человека состоит из множества химических соединений, каждое из которых имеет свою функцию. При недостатке маннита повышается риск возникновения следующих заболеваний:

  • атеросклероз;
  • эпилепсия;
  • отек головного мозга;
  • повышение внутричерепного давления;
  • форсированный диурез;
  • глаукома.

Полисахарид служит не только профилактическим, но и лечебным средством, способным облегчить и полностью устранить симптомы указанных недугов.

Маннит — это сильный иммуностимулятор, который укрепляет защитные функции организма, препятствуя проникновению извне различных инфекций и вредоносных бактерий. Данное вещество также оказывает противовоспалительное воздействие, например, при ссадинах или язвах на слизистой оболочке.

Классификация липидов

Классификация липидов – спорный вопрос. Существуют разные типы деления этих веществ: по степени растворимости в воде и другим физико-химическим свойствам, по структурным и биосинтетическим особенностям. Мы не будем рассматривать полной классификации, обратим внимание только на те вещества, которые имеют важнейшее значение в биосистемах.

В зависимости от состава липиды классифицируют на несколько групп. Различают простые и сложные липиды. Сложные липиды в отличие от простых имеют дополнительные нелипидные группы.

Название класса липидов Состав и строение липидов
Триглицериды: животные жиры, растительные масла. Сложные эфиры глицерина и остатков ВЖК:

·       стеариновой – C17H35COOH

·       пальмиьтновой – C15H31COOH

·       олеиновой – C17H33COOH

Воска: пчелиный, растительный. Сложные эфиры ВЖК и высокомолекулярных одноатомных кислот.
Стерины (стеролы): холестерол, кортикостерон, тестостерон, эстрадиол. Высокомолекулярные спирты, состоящие из нескольких циклических блоков.
Фосфолипиды. Триглицериды, в молекуле которых одна ВЖК заменена на остаток фосфорной кислоты H3PO4
Липопротеины Соединения липидов с белками.
Гликолипиды Соединения липидов с углеводами.
Классификация липидов

В настоящее время целесообразно руководствоваться следующей классификацией липидов:

  • ацилглицеролы (нейтральные жиры) – моно-, ди- и триглицериды. Универсальные вещества всех организмов. Они могут вступать во все реакции, свойственные сложным эфирам. Самая значимая из них – реакция омыления. При омылении (гидролизе) из ацетилглицеролов образуется глицерол и соли жирных кислот (мыла). Омыление может быть ферментативным, кислотным или щелочным;
  • диольные липиды;
  • орнито- и лизинолипиды;
  • воски;
  • фосфолипиды (глицерофосфолипиды, сфингофосфолипиды);
  • гликолипиды (гликозилдиацилглицериды, цереброзиды, олиго(поли)гликозилцерамиды, полипренилфосфатсахара);
  • жирные кислоты;
  • эйкозаноиды (простагландины, тромбоксаны, простациклины, лейкотриены);
  • стероиды (стеролы, стериды, стероидные гормоны, желчные кислоты, витамины группы D, кортикостероиды, стероидные гликозиды);
  • терпены.

Функции белков в клетке:

  1. Строительная – обусловлена наличием белка во всех клеточных структурах. (Форма всех органелл клетки зависит от структуры белков).
  2. Каталитическая – реакции в клетке без ферментов идут медленно, так как концентрации исходных веществ (субстратов) в клетке малы. Обычно размеры молекул ферментов больше, чем размеры субстратов. Например, молекулярная масса каталазы, разрушающей пероксид водорода Н2О2, равна 250000, а самого пероксида – 34. Активный центр фермента – лишь небольшой участок его молекулы, на котором и происходит сама реакция. Фермент сравнивают с замком, а субстрат – с ключом, так как они должны точно подходить друг другу. Каждая реакция катализируется своим ферментом, однако существуют ферменты, которые катализируют несколько реакций.
  3. Двигательная – все движения обусловлены работой двигательных (сократительных) белков. В мышечных клетках при сокращении нитей более активна внедрённая между волокнами миозина за счёт энергии АТФ.
  4. Транспортная – белок гемоглобин транспортирует кислород и углекислый газ в организме. Через мембраны происходит транспорт различных веществ (сахар, ионы и др.).
  5. Защитная – осуществляется с помощью антител и антигенов. Антитела – белковые структуры β-лимфоцитов избирательно связывающиеся с чужеродными белками и клетками. Антигены – белки на поверхности клетки или в растворе, по которым Т-лимфоциты различают свои клетки и чужеродные. Убитые или ослабленные бактерии и вирусы (вакцины) несут свои антигены. При введении их в организм иммунная система вырабатывает антитела, что препятствует заболеванию.
  6. Энергетическая – белки являются источниками энергии. 1г белка при окислении даёт 17,6 кДж. Белок при разрушении образует СО2, Н2О, NH3. Аммиак NH3 ядовит, поэтому в печени он превращается в мочевину и мочевую кислоту.
  7. Регуляторная – пептидные гормоны, выделяемые железами внутренней секреции, изменяют обмен веществ в клетках определенных тканей.

Инсулин активирует захват молекулы глюкозы клеткой и синтез из неё гликогена. Без инсулина клетки голодают, так как не поглощают глюкозу, в результате чего развивается сахарный диабет. Т-лимфоциты передают с помощью белков информацию о чужеродных клетках β-лимфоцитам.

ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Свойства белков так же разнообразны, как и функции. Одни растворяются в воде и образуют коллоидные растворы, другие растворяются в разбавленных растворах солей. Некоторые нерастворимы, например, белки кожи.

ХИМИЧЕСКИЕ СВОЙСТВА

В радикалах АК-остатков белков содержатся различные функциональные группы, способные вступать в химические реакции:

  • восстановления;
  • этерификации;
  • лкилирования;
  • нитрования.

Будучи амфотерным соединением белок реагирует и с кислотами, и со щелочами.

Структурная функция

  • Участник аминокислотного обмена со взаимопревращениями в глицин, цистин и цистеин.
  • Участвует в образовании сложного аминоспирта сфингозина, входящего в состав сфингомиелина, вещества, образующего мембраны нервных клеток.
  • Содержится в казеине молока и в вителлине яичного желтка, находясь в виде сложного эфира серинфосфорной кислоты, обеспечивает обмен веществ растущего организма
  • Предшественник пуриновых и пиримидиновых оснований, которые являются структурным звеном информационных матриц клеток ДНК и РНК.
  • Предшественник порфирина – белка, образующего гемоглобин — основного транспорта кислорода
  • Предшественник креатина – белка, снабжающего мышцы энергией

Структурная роль

Серин играет важную роль в каталитическом функционировании многих ферментов. Было показано, что серин участвует в активности химотрипсина, трипсина и многих других ферментов. Так называемые нервно-паралитические газы и многие вещества, используемые в инсектицидах, действуют путем объединения с остатком серина в активном центре ацетилхолинэстеразы, полностью ингибируя фермент. В качестве составного элемента (остатка) белка, боковая цепь серина может подвергаться О-связанному гликозилированию, что может иметь функциональные связи с диабетом. Серин — один из трех аминокислотных остатков, которые, как правило, фосфорилируются с помощью киназы в клеточных сигналах у эукариот. Фосфорилированные остатки серина часто называют фосфосерин. Серинпротеаза является распространенным типом протеазы.

Дефицит и избыток треонина: опасные нарушения гармонии

Если уровень треонина превышен, в организме начинается аккумуляция мочевой кислоты. Ее чрезмерная концентрация ведет к дисфункциям почек, печени и повышенной кислотности желудка. Потому следует четко контролировать содержание АК, не допуская перенасыщения ею.

Дефицит аминокислоты – редкое явление. Отмечается из-за неполноценного питания и расстройств психики.

Симптомами недостатка треонина являются:

  • снижение концентрации внимания, потеря сознания;
  • депрессивное состояние;
  • быстрое похудение, дистрофия;
  • мышечная слабость;
  • замедление развития и роста (у детей);
  • плохое состояние кожи, зубов, ногтей и волос.

Прием серина в качестве добавки

Дозировка

Рекомендуемая дозировка добавки L-серина варьируется от 500 до 2000 мг. Хорошо усваиваемой и связанной с низким риском отравления считается доза до 30 граммов. (44)

Людям с аллергией на клейковину и сою следует проявлять осторожность при приеме добавок L-серина, поскольку некоторые производители могут использовать данные аллергены в своей продукции. (45, 46)

Редко, но прием добавок серина может привести к следующим побочным эффектам:

  • Диарея
  • Запор
  • Тошнота
  • Частое мочеиспускание

Избыточное потребление серина может оказывать токсический эффект. Кроме того, серин является одной из аминокислот, необходимых для роста раковых опухолей, поэтому превышение уровня его потребления может способствовать увеличению скорости распространения рака. (47)

Ограничения и предостережения

Исследования D-серина и L-серина показали, что дополнительный прием данных аминокислот может быть потенциально полезен для организма. Однако для подтверждения этих гипотез все еще требуется проведение дополнительных клинических исследований.

Несмотря на схожесть, D-серин и L-серин оказывают различное положительное воздействие на организм. При этом большая часть существующих исследований проводилась с использованием лишь одной из двух форм данного вещества. (48)

Исследования совместного приема обоих форм серина крайне немногочислены, а сам по себе D-серин стал объектом внимания клинических исследований относительно недавно.

У беременных женщин уровень серина несколько ниже. Однако данных о том, стоит ли и безопасно ли данной категории принимать добавки L-серина, пока нет. (49)

L-серин считается безопасной пищевой добавкой для большинства людей. D-серин чаще рекомендуют к использованию пожилыми пациентами в целях повышения ясности сознания. (50)

Изучить отзывы, а также купить серин, можно в магазине iHerb.

  • Этот абзац содержит рекламную ссылку. Вы получите от нас скидку при оформлении первого заказа, а магазин выплатит нам небольшой процент от прибыли с вашей покупки. Это позволяет вам сэкономить, а нам поддерживать работу сайта и редакции. Спасибо!
Серин Общие Систематическоенаименование

2-​амино-​3-​гидроксипропановаякислота

Сокращения

Сер, Ser, S UCU,UCC,UCA,UCG;AGU,AGC

Хим. формула

HO2C-CH(NH2)CH2OH

Рац. формула Физические свойства Молярная масса

105,09 г/моль

Плотность

1,537 г/см³

Термические свойства

Температура

плавления

228 °C

Химические свойства Константа диссоциации кислоты p K a {\displaystyle pK_{a}}

2,139,05

Классификация Рег. номер CAS PubChem Рег. номер EINECS SMILES InChI ChEBI ChemSpider

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Медиафайлы на Викискладе

Сери́н (англ. Serine; α-амино-β-оксипропионовая кислота; 2-амино-3-гидроксипропановая кислота) — гидроксиаминокислота, существует в виде двух оптических изомеров — L и D.

L-серин участвует в построении почти всех природных белков. Впервые серин был выделен из шёлка, в белках которого он обнаружен в наибольших количествах. Серин относится к группе заменимых аминокислот, в организме человека он может синтезироваться из промежуточного продукта гликолиза — 3-фосфоглицерата.

Серин участвует в образовании активных центров ряда ферментов (эстераз, пептидгидролаз), обеспечивая их функцию. Протеолитические ферменты, активные центры которых содержат серин, играющий важную роль при выполнении каталитической функции, относят к отдельному классу сериновых пептидаз.

Действие некоторых фосфорорганических соединений основано на необратимом присоединении молекулы яда к OH- группам остатков серина, приводящему к полному ингибированию каталитической активности ферментов. Токсический эффект прежде всего связан с ингибированием ацетилхолинэстеразы.

Фосфорилирование остатков серина в составе белков имеет важное значение в механизмах межклеточной передачи сигналов.

Кроме того, серин участвует в биосинтезе ряда других аминокислот: глицина, цистеина, метионина, триптофана.

Глицин образуется из серина при действии серин-оксиметилтрансферазы в присутствии тетрагидрофолиевой кислоты. Кроме того, серин является исходным продуктом синтеза пуриновых и пиримидиновых оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ.

В процессе распада в организме серин подвергается прямому или непрямому дезаминированию с образованием пировиноградной кислоты, которая в дальнейшем включается в цикл Кребса.

D-серин образуется из L-серина при помощи фермента серин-рацемазы и является эндогенным лигандом глицинового сайта NMDA-рецептора. Деградация D-серина происходит под воздействием оксидазы D-аминокислот.

Это заготовка статьи об органическом веществе. Вы можете помочь проекту, дополнив её.

Эта страница в последний раз была отредактирована 3 декабря 2019 в 19:07.

Фармакология

Кровяная сыворотка

Как отмечают ученые, после приема 30-120мг/кг D-серина (шизофрениками), его концентрация в сыворотке растет, достигая своего максимума через 1-2 часа (Tmax = 1-2 часа , Cmax = 120,6+/-34,6нмоль/мл при 30мг/кг, Cmax = 272,3+/-62нмоль/мл при 60мг/кг и Cmax = 530,3+/-266,8нмоль/мл при 120мг/кг). D-серин достигает пиковой концентрации в крови спустя 1-2 часа после перорального приемa, находясь при этом в линейной дозо-зависимости (наивысшая тестируемая пероральная дозировка составляет 120мг/кг). Эксперимент с участием людей, страдающих болезнью Паркинсона, которые на протяжении 6 недель ежедневно принимали D-серин (30мг/кг), показал, что уровень D-серина у них в сыворотке увеличился с менее чем 10мкм до 120,0+/-52,4мкм; такой же эффект наблюдался и у людей с посттравматическим стрессом: при приеме той же пероральной дозы D-серина, его уровень в сыворотке увеличился в 10 раз и составил 146+/-126,26мкм. При пероральном приеме препарата шизофрениками на протяжении 4 недель (в той же дозировке 30мг/кг), его концентрация в сыворотке выросла с 102,0+/-30,6нмоль/мл до 226,8+/-72,8нмоль/мл (на 122%), в зависимости от дозировки (30-120мг/кг). Изначальный уровень D-серина в сыворотке повышается после приема препарата, при этом, по словам некоторых ученых, дозировка 30мг/кг вызывает 10-кратное увеличение концентрации D-серина в сыворотке у здоровых людей и чуть меньшее – у шизофреников. Прием D-серина не влияет на сывороточную концентрацию глицина, глутамата, аланина и L-серина. Прием D-серина также не оказывает значительного воздействия на сывороточную концентрацию прочих аминокислот, принимающих участие в метаболизме серина.

Нервная система

Концентрация D-серина в головном мозге варьируется в диапазоне 66+/-41нмольl/г сырого веса или 2,18+/-0,12нмоль/мг, что составляет приблизительно 10-15% от общего запаса серина в организме (L-серина больше). Уровень D-серина особенно высок в префронтальной и теменной коре головного мозга и чуть ниже – в мозжечке и спинном мозге. Период полувыведения (из мозга) D-серина составляет 16 часов, при этом такая низкая дозировка как 58мг/кг (у мышей) вызывает увеличение сывороточной концентрации препарата. В ходе одного эксперимента, D-серин был обнаружен в спинномозговой жидкости контрольной группы (2,72+/-0,32мкм), а также у людей с постгерпетической невралгией (1,85+/-0,21мкм) и дегенеративным остеоартритом (3,97+/-0,44мкм), тогда как сывороточная концентрация D-серина у шизофреников оказалась ниже, чем у контрольной группы (срединное значение составляет 1,26мкм против 1,43мкм; хотя разница несущественная), зато у них оказался выше сывороточный уровень L-серина (22,8+/-8,01мкм против 18,2+/-4,78мкм), а также соотношение между L-серином и D-серином. D-серин обнаружен в спинномозговой жидкости (концентрация ниже, чем в сыворотке) и в мозге (период полувыведения дольше, чем у сывороточного D-серина). Хронический прием D-серина способствует повышению уровня L-серина в коре головного мозга мышей.

Читайте также:  В каких продуктах содержится пектин список